
Icarus 229 (2014) 408–417
Contents lists available at ScienceDirect

Icarus

journal homepage: www.elsevier .com/ locate/ icarus
A martian case study of segmenting images automatically
for granulometry and sedimentology, Part 2: Assessment
0019-1035/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.icarus.2013.09.021

⇑ Corresponding author. Fax: +1 (225) 578 2302.
E-mail address: wk43@cornell.edu (S. Karunatillake).
Suniti Karunatillake a,⇑, Scott M. McLennan b, Kenneth E. Herkenhoff c, Jonathan M. Husch d,
Craig Hardgrove e, J.R. Skok a

a Louisiana State University, E235 Howe-Russell, Baton Rouge, LA 70803, United States
b Department of Geosciences, State University of New York at Stony Brook, Stony Brook, NY 11794, United States
c U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ 86001, United States
d Department of Geological, Environmental, and Marine Sciences (GEMS), Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648, United States
e Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287-1404, United States

a r t i c l e i n f o
Article history:
Available online 9 October 2013

Keyword:
Mars, surface
Data reduction techniques
Image processing
a b s t r a c t

In a companion work, we bridge the gap between mature segmentation software used in terrestrial sed-
imentology and emergent planetary segmentation with an original algorithm optimized to segment
whole images from the Microscopic Imager (MI) of the Mars Exploration Rovers (MER). In this work,
we compare its semi-automated outcome with manual photoanalyses using unconsolidated sediment
at Gusev and Meridiani Planum sites for geologic context. On average, our code and manual segmentation
converge to within �10% in the number and total area of identified grains in a pseudo-random, single
blind comparison of 50 samples. Unlike manual segmentation, it also locates finer grains in an image with
internal consistency, enabling robust comparisons across geologic contexts. When implemented in Math-
ematica-8, the algorithm segments an entire MI image within minutes, surpassing the extent and speed
possible with manual segmentation by about a factor of ten. These results indicate that our algorithm
enables not only new sedimentological insight from the MER MI data, but also detailed sedimentology
with the Mars Science Laboratory’s Mars Hand Lens Instrument.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In a companion work (Karunatillake et al., 2014) we devel-
oped an algorithm for semi-automated photoanalyses of uncon-
solidated sediment. This served an outstanding need (e.g.,
Cabrol et al., 2008; Karunatillake et al., 2010a; McGlynn et al.,
2011) in the planetary community to sedimentologically analyze
an extensive database of high resolution images of martian
sediment. Developed primarily for the Microscopic Imager (MI)
(Herkenhoff et al., 2003, 2008) of the Spirit and Opportunity
rovers, the algorithm segments images containing a diverse size
range of unconsolidated sediment by operating separately on the
fine grains that typically occupy the background (Karunatillake
et al., 2014).

Gusev and Meridiani landing sites provide the geological con-
text to assess the effectiveness of our algorithm. Despite broad
compositional and physical similarities of martian sediment across
landing sites (Yen et al., 2005), variation of secondary sediment
phases within Gusev contrasts with that at Meridiani (McGlynn
et al., 2012; McSween et al., 2010). Examples of distinctness
include well-sorted sand discovered within the Columbia Hills of
Gusev Crater (Sullivan et al., 2008) and lag deposits of hematite
concretions at Meridiani (Calvin et al., 2008). Such differences re-
flect the contrasting geology of the two sites, with Gusev’s evolu-
tion as an impact crater (e.g., Squyres et al., 2004) and Meridiani
plains potentially representing a site of ancient ground water
upwelling (Andrews-Hanna et al., 2010). Possible pyroclastic con-
structs such as Home Plate in the Columbia Hills (e.g., Lewis
et al., 2008) at Gusev and the sulfate-bearing Burns sedimentary
strata at Meridiani (McLennan et al., 2005) exemplify the geologic
contrast.

In this manuscript, we compare the semi-automated results of
our algorithm with the manual counterpart using MI images of
unconsolidated sediment at Gusev and Meridiani. Given deficien-
cies we experienced (Karunatillake et al., 2010a) in manual seg-
mentation, this assessment serves to reveal relative strengths
and weaknesses of both methods. Furthermore, in the planetary
context where physical samples of sediment remain unavailable,
comparing manual and semi-automated segmentation remains
an optimal validation method. We advance the analysis by evalu-
ating the internal consistency of manual segmentation, which pro-
vides additional insight into the issues experienced in our earlier
work (Karunatillake et al., 2010a).
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2. Method and data

The spatial resolution of photoanalysis – automated or manual
– depends solely on the imaging device; for example, 2 pixels
would correspond nominally to 62 lm for MI images. Throughout
the text, we list such examples with linear size and Wentworth
classification in parenthesis for MI images, such as 2 pixels (MI:
62 lm, coarse silt), to provide context. However, the effective res-
olution may often differ, depending on the desired accuracy of size
for smaller grains and of distribution for larger grains. We express
such constraints in image pixels to facilitate scale estimates for any
imager, as the product of pixel size and the linear dimension of the
image in pixels.
2.1. Analytical and statistical evaluation methods

As the goal of this work, we compare the accuracy and preci-
sion of our segmentation algorithm with manual segmentation.
Our analyses report primarily phi values (U) expressed as �log2

(mean diameter in mm). We identify relative strengths and weak-
nesses in two ways: (1) we compare the automated outcome with
manual results; (2) we address the absence of physical samples
by comparing sequential manual segmentations pairwise to
establish context for any disparities between manual and auto-
mated segmentation.

The first comparison employed 50 sample images, each at least
a 50 � 50 pixel size pseudo-random excerpt from a martian MI im-
age. The size of the excerpts was limited by manual segmentation;
even this small image takes approximately 20 min for a sedimen-
tologist to analyze. Automated segmentation was applied to the
entire MI image from which the samples were extracted. We en-
sured sufficient statistical validity by using 10 excerpts each from
five MI images of martian sediment. Two of the original images
were used to develop the algorithm, while the remaining three
were chosen pseudo-randomly from both Meridiani and Gusev.
While the MIs on the two rovers are practically identical
(Herkenhoff et al., 2008), significant textural differences –
including an abundance of hematitic spherules at Meridiani
(Klingelhöfer et al., 2004) – at the two nearly antipodal sites on
Mars helped to assess the broad applicability of the code. A sin-
gle-blind approach with samples segmented manually without
seeing the automated output ensured additional rigor; we viewed
the whole MI image only where manual segmentation proved
particularly difficult.

We segmented 11 pseudo-random excerpts from MI images to
assess the internal consistency of manual segmentation. This was
achieved by segmenting the images manually once, waiting a
few days to lapse to prevent residual memory effects, and seg-
menting anew. Comparing the re-segmented to the originals re-
vealed a degree of consistency attainable by a human operator.
2.2. Bulk variables

Comparisons consisted of two components, bulk and paramet-
ric comparisons. The bulk comparisons of automated and manual
segmentation were threefold: (1) difference in the total number,
dN, (2) difference in the total area, dA, and (3) areal mismatch,
mA, of segmented grains for each of the 50 samples. We minimized
bias from varying grain numbers across samples by normalizing dN
of each sample to the total number of grains from automated seg-
mentation; similarly, dA and mA were normalized to the automat-
ically segmented total grain area. For succinctness, subsequent
references to these variables denotes normalized values even
where unstated. Areal mismatch in particular can be revelatory
of consistency between one segmentation method and another,
which we computed as the total area of segmented components
(i.e., both grains and unclassified space) that do not overlap be-
tween two independent segmentations of an image.

Grains in imaged sediment samples may distribute in unique,
non-Gaussian modes, but the dN and dA distributions quantify
the difference between manual and automated segmentation. If
the two methods yield fundamentally similar results, the differ-
ences would follow Gaussian distributions about a zero mean
(e.g., Karunatillake et al., 2010b). Consequently, automated and
manual segmentation can be thought to converge if dN and dA each
approximates a random normal distribution (i.e., Gaussian), per-
haps to the extent of zero mean and unit variance (i.e., standard
normal). The narrowness of the distribution represented by kurto-
sis would constrain the relative strength of convergence between
automated and manual segmentation.
2.3. Battery of statistical tests

We may not observe sharply-peaked leptokurtic, zero-mean,
Gaussian distributions that allow decisive conclusions. But flat
and broad platykurtic, many-peaked multimodal, or different-
tailed skewed distributions may reveal conditions of convergence.
We applied a battery of tests (c.f., Karunatillake et al., 2010b) to
each of the three bulk variables (dN, dA, and mA) to assess such
deviations from a Gaussian as follows:

1. Shapiro–Wilk test (Mathematica inbuilt) of overlap with esti-
mated normal distribution.

2. Plot of cumulative distribution function (CDF) of sample versus
that of the estimated Gaussian; overlain with standard normal
for context.

3. Kolmogorov–Smirnov probability (K–S; Mathematica inbuilt) of
overlap with estimated normal distribution (Karunatillake et al.,
2010b).

4. Estimated normal distribution, excess kurtosis, and skewness.
5. Probability scale plot of the variable’s CDF versus value overlain

with that of the estimated Gaussian.
6. Frequency histogram of values subject to Kernel density esti-

mate (KDE) with a Gaussian Kernel, overlain with estimated
and standard normal histograms for context.

The standard Shapiro–Wilk test revealed goodness-of-fit with
the null hypothesis of bulk variables (dN, dA, and mA) drawn from
a normal distribution. Consequently, the probability returned by
the test represents the likelihood that a distribution sampled from
a Gaussian could diverge at least as much as observed due to
chance alone. A suitably high probability permits the null hypoth-
esis to be accepted, while a low probability will encourage its
rejection and attribute divergence to distinctness of distributions.

The second assessment allowed us to visually compare the dis-
tribution of the bulk variable with the Gaussian that best approx-
imates it. The standard normal overlay provided context for
divergence, where convergence would be reflected by an overlap
between the overlay and the CDF. The K–S test advances the visual
comparison quantitatively, albeit with high sensitivity to diver-
gence between the distributional tails.

The fourth test provided a parametric snapshot of the bulk var-
iable’s distribution, with the mean and standard deviation of the
Gaussian estimate providing important input parameters for the
sixth test. Measures of excess kurtosis and skewness in particular
provided helpful summary parameterizations to identify the nat-
ure of the distribution, and in turn the similarities and differences
between manual and automated segmentation. Meanwhile, the
fifth test visually evaluated whether the actual distribution of a
bulk variable corresponds to a normal distribution, with the
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straightness and proximity to a line of reference revealing the nat-
ure of convergence.

Lastly, the sixth test allowed an immediate comparison among
the estimated Gaussian probability density function (PDF), the ob-
served PDF, and extent of difference from a standard normal distri-
bution. The KDE method of generating the frequency histogram for
the bulk variable enabled us to identify the shape and modality of
the actual distribution above the level of noise (e.g., Sheather and
Jones, 1991). We supplemented the six tests with a visual inspec-
tion of sorted dN, dA, and mA values across all 50 samples. Addi-
tionally, the plot from test (5) identified samples representing
both extreme divergence and maximum convergence between hu-
man and code.

Of the three bulk variables, dN, dA, and mA, the last, denoting
areal mismatch, is nonnegative. Consequently, the ideal outcome,
of convergence between software and manual segmentation,
would be a distribution skewed strongly to the right with an
asymptotically zero mean and high leptokurty. The convergence
or divergence on this basis was determined visually with test
(5); quantitatively we used tests (1) and (3).
2.4. Parametric assessment

Bulk comparisons were reinforced with two parametric com-
parisons. The first compares the mean and standard deviation of
the grain diameter distribution of one segmentation method with
another for each of the 50 samples. Motivated by Karunatillake
et al. (2010a), this employs the difference between the mean val-
ues with standard deviation propagated accordingly for manual
versus automated or manual versus manual comparisons. A sorted
plot of mean differences with propagated standard deviations as
error bands provided preliminary qualitative insight. Additional
assessments utilized the same battery of tests as for the bulk vari-
ables. Since agreement between two methods would yield identi-
cal means, the distribution of differences in sample average
values between the two methods would ideally converge with a
Gaussian distribution where convergence would return a distribu-
tion mean approximating zero.

The second parametric assessment employed the K–S distribu-
tional comparison (e.g., Karunatillake et al., 2010b) between man-
ual and automated segmentation for each sample image, where a
larger probability confers greater confidence that the two distribu-
tions are identical. Ideally then, a histogram of K–S probabilities for
all 50 samples would be skewed to the left with the peak asymp-
totically approaching unity. Even if not, peaks of high K–S probabil-
ity in a multi-modal distribution would indicate that the two
methods – manual versus automated – converge satisfactorily.
Such tendencies were evaluated by applying our battery of tests
to the distribution composed of the K–S probability for each of
the 50 samples. A KDE frequency histogram of the K–S probabili-
ties provided additional visual clarity to the analysis.
Fig. 1. KDE histogram of total area of mismatch between grains segmented
manually and those segmented automatically as implemented in Mathematica-8
(Am). Normalized to the total area of grains segmented by the algorithm (Ac). The
histogram of this 50 sample dataset has been smoothed with a Gaussian Kernel for
visual clarity. Best fit Gaussian to the distribution is shown for reference, while the
standard normal distribution (blue) provides shape context. Possible multimodal-
ity, and a notable shoulder at approximately 10% mismatch, are evident in the
histogram. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
3. Results and discussion

An unexpected outcome of our assessment was an approximate
estimate of the time for a sedimentologist to segment an entire MI
image manually, individually identifying most of the (10–20) � 103

grains. We estimate no less than 5 days, since each of the roughly
400 50 � 50 samples constituting one MI image consumes approx-
imately 20 min to segment completely. A more likely time frame
would be about sixteen 8-h workdays and perhaps even longer gi-
ven the tedium of the effort. In addition to internal consistency
documented subsequently, automation yields a clear advantage
in speed, typically taking no more than 5 min to segment an entire
MI image in the Mathematica-8 software environment, including
manual adjustment of guide parameters. Without adjustment,
the processing time is only about a minute. Similar processing
speeds could be expected on a typical business laptop computer
for other software environments such as IDL, R, and MATLAB.
3.1. Battery of statistical tests

Upon quantitative evaluation, including the battery of six tests
described in Section 2.3, we identified informative differences with
manual segmentation and intrinsic limitations of photoanalyses. In
bulk comparisons, the striking disparity was in areal mismatch. As
Fig. 1 illustrates with KDE frequency histograms corresponding to
Test 6 in Section 2.3, areal mismatch frequently exceeds 50% of the
total area of grains segmented by the algorithm. This causes the
�0.53 mean and �0.19 standard deviation observed in the Gauss-
ian (Fig. 1) best fit to the distribution of Am values (Am normalized
to the total area of grains segmented by the algorithm for reasons
described in Section 2.2, which we still refer to as Am to avoid rep-
etitious use of ‘‘normalized.’’ The other bulk variables are also
implicitly normalized).

Tests indicate a non-normal distribution of Am, enabling addi-
tional insight from the actual distribution relative to its Gaussian
fit. The Shapiro–Wilk probability of Am converging with a normal
distribution (Test 1) yields 1.4E�3, while the K–S probability of
the same (Test 3) yields 1.2E�2. Consequently, both tests show
that areal mismatch, as represented by Am values, distributes
non-normally at a 0.05 (i.e., 95% statistical confidence) threshold,
suggesting that the best-fit Gaussian in Fig. 1 may not represent
the actual Am distribution. The comparative CDF plot and probabil-
ity scale plot of the CDF for the Am distribution (Fig. 2) support this
inference, as does the �0.97 skewness. Consequently, the peaks
and shoulders of the KDE distribution (Fig. 1) provides meaningful
information on the nature of the actual Am distribution.

The shoulders of the Am distribution (Fig. 1), corresponding to
areal mismatches at 20% and 40%, normalized to the total area of
grains segmented automatically, suggest better areal convergence
between manual and automated segmentation than evident from
the best fit Gaussian peak at 50% mismatch. For example, on a
probability scale plot of areal mismatch, areal mismatch decreases



Fig. 2. Top graph showing probability plot of the cumulative distribution function
(CDF) of the relative areal mismatch (mA) between the two methods relative to
those segmented automatically. This normalization to the total area of grains
derived from the algorithm minimizes bias from the variability of total grain area
across different MI image excerpts. Probability plot reveals extent of correspon-
dence between the actual CDF on y-axis and the standard normal distribution on
the x-axis. Difference between the actual data (blue dots) and the line of perfect
correspondence (dotted line) reflects deviation of the mA CDF from the standard
normal distribution. Section 3.1 presents the insight from this probability plot.
Bottom graph showing the scaled (logarithmic) probability plot identifies the
strongest deviations from normality. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. KDE histogram of relative areal mismatch (mA, x-axis) between temporally
spaced manual segmentations of identical image excerpts. We compute mA relative
to the second manual segmentation primarily to preventing bias from varying area
of grains across different MI images, and secondarily to ensure a consistent
denominator. KDE applied with a Gaussian Kernel yields the actual distribution of
mA (red curve) based on 10 sample excerpts, a subset of the 50 excerpts from 10 MI
images. The size of each excerpt, at no smaller than 50 � 50 pixels reflects the
feasibility limits of segmenting manually. The orange curve identifies the best-fit
Gaussian to the mA distribution. For reference, we also plot the KDE histogram of a
standard normal distribution in blue. Areal overlap in grains from sequential
manual segmentation would yield a sharply leptokurtic Gaussian skewed sharply to
the right. In Section 3.1 and related text, we discuss what deviations from this ideal,
as evident from both the best fit and actual KDE histograms, may imply. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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to 10% when grains tens-of-pixels across (MI: �300 lm, medium
sand) are present. This may relate fundamentally to the smallest
pixel size of grains that may be segmented correctly (Graham
et al., 2005b), which we extrapolate for the planetary context in
our companion work (Karunatillake et al., 2014). This may also re-
flect inferior internal consistency of manual segmentation.

Areal mismatch values of manual segmentation compared to it-
self demonstrates a major weakness: substantial inconsistency
ranging 35% to 50%. The peak of the resulting Am distribution
suggests approximately 45% internal inconsistency typically, with
inconsistency as high as 60% evident from the distributional shoul-
der (Fig. 3). This suggests that instances of higher areal mismatch
between automated and manual segmentation reflects mostly
human, not algorithmic, limitations. Furthermore, the internal
inconsistency of segmenting manually, as evident in Fig. 3, con-
trasts starkly with the internal consistency of automated
segmentation.

The susceptibility of manual segmentation to internal inconsis-
tency aside, bulk comparisons (dN, dA) between manual and auto-
mated segmentation were favorable. The dN distribution indicates
that the two methods may produce differences in the number of
grains as high as 60% (normalized to the automated number of
grains) for individual samples (Fig. 4). KDE histogram of the
samples (Fig. 5 red curve) shows that manual segmentation may
differ from the automated counterpart between under-estimating
the number of grains by about 18%, corresponding to the KDE
histogram peak, and over-estimating the number by about 35%,
corresponding to the shoulder. Nevertheless, the dN distribution it-
self remains approximately Gaussian based on tests 1 (Shapiro–
Wilk) and 4 (K–S). Accordingly, the best fit Gaussian (Fig. 5) peak
suggests that manual segmentation typically underestimates the
number of grains by no worse than 7% (c.f., Graham et al., 2010)
with a distributional standard deviation of �35%.

Differences in the total area of grains, dA, normalized to the to-
tal computed area suggest a non-Gaussian distribution as evident
in the KDE histogram (Fig. 6) corresponding to Test 6. Specifically,
the normalized dA distribution diverges from a Gaussian given a
Shapiro–Wilk probability of �1E�3 (Test 1) and K–S probability
of �7E�3 (Test 3), as also evident in the CDF plot (Test 2) and prob-
ability scale plot (Test 5) shown in Fig. 7. Consequently, the KDE
histogram of the sample generated as a component of Test 6
provides the most insight into the nature of the dA distribution
(Fig. 6). This shows the primary dA peak at approximately �4%
(normalized to area of automatically segmented grains), with
two secondary peaks at roughly�35% and 48%, along with a dimin-
ished peak at �38%. The relative heights of the peaks suggest that
manual segmentation typically underestimates the total area of
grains by about 4% relative to the total area of computed grains.
Even the less informative Gaussian best fit suggests an underesti-
mate less than 13%. Smaller differences may be attainable depend-
ing on the sizes of grains within a sample.

Instances of manual-automated convergence are complex out-
comes of both grain size distribution and abundance of larger
grains that do not necessarily reflect a single factor. Nevertheless,
a preponderance of grains sufficiently large for a human to identify
without magnification generally enhances convergence with the
algorithm. Fig. 8 illustrates an example of convergence in both
placement (reflected in a low mA) and area (reflected by a low
absolute dA) of grains.



Fig. 4. Relative difference (dN, y-axis) in total number of grains as segmented automatically and manually as discussed in Section 3.1. For each sample image, we compute dN
relative to the total number of grains as segmented automatically, preventing bias from varying number of grains across different images. The x-axis acts solely as a
placeholder for the sorted dN values, with the axis tick marks corresponding to the 50 sample excerpts from 10 MI images tagged by pixel location within each image. The size
of each excerpt, at approximately 50 � 50 pixels accounts for the feasibility limits of segmenting manually.

Fig. 5. KDE histogram of relative difference (dN, x-axis) in total number of grains as
segmented automatically and manually as discussed in Section 3.1. We compute dN
relative to the total number of grains as segmented automatically, preventing bias
from varying number of grains across different MI images. KDE applied with a
Gaussian Kernel yields the actual distribution of dN (red curve) based on 50 sample
excerpts from 10 MI images. The size of each excerpt, at no smaller than 50 � 50
pixels accounts for the feasibility limits of segmenting manually. The orange curve
identifies the best-fit Gaussian to the dN distribution. For reference, we also plot the
KDE histogram of a standard normal distribution in blue. Identical results from
automated and manual segmentation would yield a Gaussian with zero mean for
the dN distribution. In Section 3.1 and related text, we discuss what deviations from
this ideal may imply. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. KDE histogram of relative difference (dA, x-axis) between total area of grains
as segmented automatically and manually as discussed in Section 3.1. We compute
dA relative to the total area of grains as segmented automatically, preventing bias
from varying number of grains across different MI images. KDE applied with a
Gaussian Kernel yields the actual distribution of dA (red curve) based on 50 sample
excerpts from 10 MI images. The size of each excerpt, at no smaller than 50 � 50
pixels, accounts for the feasibility limits of segmenting manually. The orange curve
identifies the best-fit Gaussian to the dA distribution. For universal shape and peak
reference, we also plot the KDE histogram of a standard normal distribution in blue.
Identical results from automated and manual segmentation would yield a Gaussian
with zero mean for the dA distribution. In Section 3.1 and related text, we discuss
what the deviations from this ideal may imply. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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Overall, our bulk comparisons – revealing mostly minor dispar-
ities in total area and number of grains – demonstrate that manual
and automated segmentation yield grains of consistent size. How-
ever, a human operator is challenged when the image needs to be
magnified to identify pixels within a grain, then reduced to locate
grain boundaries. In essence, grain boundaries are easier to identify
for a human un-magnified since the grayscale transitions between
grain edge and background become clearer; but human hand–eye
coordination is insufficient to mark individual pixels without mag-
nification. This may cause the relatively chaotic (i.e., internally
inconsistent) manual placement of segmented grains that we ob-
served (Fig. 3). In contrast, automation possesses the major
strength of positioning grains with internal consistency not only
within a single image, but also across different images.



Fig. 7. Probability plot of the cumulative distribution function (CDF) of the relative
difference in total area of grains (dA) as segmented manually relative to those
segmented automatically. The relative calculation minimizes bias from variability
of total area attributable to grains across different MI image excerpts. Probability
plot employs correspondence between the actual CDF on y-axis and the standard
normal distribution on the x-axis. Deviation of the dA CDF from the standard normal
distribution reflected by the difference between the actual data (blue dots) and the
line of perfect correspondence (dotted line). Section 3.1 presents the insight from
this probability plot. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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3.2. Parametric assessment

The summary parametric test provided additional insight into
the bulk comparisons. First, we visually compared the distribution
of areal mean U values for the 50 samples resulting from the auto-
matic segmentation with that from manual segmentation (Fig. 9).
We employed Gaussian KDE histograms as described for Test 6 in
Section 2.2, to focus on distributional features above noise. The
comparison highlights convergence both at fine and coarse scales
of grain size.

We advanced the visual comparison of areal mean U values
with the difference of corresponding sample pairs. This involved
subtracting mean U of each sample from manual segmentation
with that from automated segmentation. We illustrate this in
Fig. 10 with a Gaussian KDE plot of the difference; the Gaussian
best fit (orange) and standard normal PDF (blue) provide context
for the nature of distributional differences. Had the two methods
generated identical distributions of grain size, the 50 mean U dif-
ferences (red) would have yielded a Gaussian distribution with
mean zero. Even though the actual distribution manifests the pri-
mary peak at zero, a small peak at approximately �0.5 and a shoul-
der at �0.5 suggest slight deviations from the ideal (Fig. 10). The
Gaussian estimate for the difference distribution showing a mean
of 0.12 with a standard deviation of 0.25 reflects the effect of the
small peak and shoulder on magnifying variance. Summarily then,
areal mean U values of automated and manual segmentation
mostly overlap with zero in the context of propagated standard
deviation.
3.3. Areal distribution of grain size compared

Beyond parametric and bulk comparisons, we directly com-
pared the areal distribution of grains resulting from manual seg-
mentation with its automated counterpart. This detailed
comparison of the two distributions using the K–S test (described
in the context of Test 3 for bulk comparisons in Section 2.3) applied
to each of the 50 samples affords additional insight, yielding one
K–S probability for each sample. As shown in Fig. 11, the K–S prob-
abilities are distributed multimodally, not Gaussian. The probabil-
ity (i.e., p-value) indicates the likelihood of differences at least as
extreme as the observed for two random samples drawn from
the same population. We may state this intuitively as the likeli-
hood that two samples could be at least as different as observed
due to chance alone. Accordingly, a higher probability supports
convergence, while a lower value supports divergence.

The best-fit Gaussian to the distribution of K–S probabilities
(Fig. 11, orange) yields an average K–S probability of 25%, suggest-
ing a 25% likelihood that even samples from identical distributions
would differ by at least as much as observed. This high probability
strengthens the case that our 50-sample assessment is consistent
with statistically indistinguishable areal distributions of grain sizes
from automated and manual segmentation. Much lower probabil-
ities, usually less than 5%, would have established statistically dis-
tinct distributions. Furthermore, the actual distribution’s minor
peak approximates unity reflecting substantial convergence of
the two methods. As such, the distribution of K–S probabilities
constrains the degree to which differences between manual and
automated areal distributions relate to chance than systematic
issues.

The KDE histogram of K–S probabilities (Fig. 11, red) reveals
some divergence between manual and automated segmentation.
Specifically, the K–S distribution (as opposed to its best fit) mani-
fests the primary peak at �5%, indicating that a substantial fraction
of samples diverge between manual and automated segmentation.
However, the secondary peak approximating unity and high shoul-
der connecting the secondary peak with the primary peak intro-
duce substantial positive skewness to the distribution,
strengthening the case for convergence represented by higher
probabilities. In the context of additional analyses with the cumu-
lative distribution of K–S values (Fig. 12), we may conclude conver-
gence generally, albeit with instances of divergence.

The cumulative distribution of K–S probabilities enables a thor-
ough comparison of results from automated and manual segmen-
tation. We divide the cumulative distribution of K–S probabilities
shown in Fig. 12 into three sections using thresholds of K–S prob-
ability: first the portion less than 0.1, next between 0.1 and 0.8, and
finally exceeding 0.8. The first threshold identifies instances where
the areal distributions of grain sizes from the two methods are less
than 10% likely to originate from the same population. As stated in
the introductory paragraph of this section (Section 3.1), this
threshold identifies cases of less than 10% likelihood of sample dis-
tributions at least as distinct as the observed originating from the
same parent population. In contrast, values exceeding the second,
0.8, threshold identify instances of negligible divergence. The inter-
mediate range from 0.1 to 0.8 represent generally convergent dis-
tributions. Our choice of probability thresholds is actually more
conservative than the general standard in hypothesis testing where
the hypothesis of identical distributions – generally the null
hypothesis applied to sample and population – is accepted until
the probability decreases to 5% or less (Karunatillake et al.,
2010b, 2014).

In the three sections of the cumulative distribution of K–S prob-
abilities for the 50 samples, the first at K–S less than 10% also cor-
responds to 50% of the samples. This indicates divergent areal
distributions of grain sizes for half the samples, moderated how-
ever, by the higher confidence threshold and the K–S method’s
high sensitivity to even subtle differences in the distributional
tails. Furthermore, the remaining 50% of samples yield K–S values
higher than 10%, indicating minimal divergence. Reinforcing this
trend, roughly 15% of the 50 samples show compelling conver-
gence at K–S exceeding 80% (Fig. 12). Summarily therefore, the
data do not suggest systematic differences between manual and
automated segmentation.

In practice, we anticipate compelling convergence between
automated and manual segmentation particularly at the distribu-
tional middle as shown by the good visual agreement between



Fig. 8. Example of simultaneously minimal areal mismatch and low absolute dA between manual and automated segmentation highlights an instance of better agreement
between the two segmentation methods. Upper context image approximately 3 � 3 cm, with 50 � 50 pixel sample excerpt highlighted as brightened square at bottom center.
Lower graphs in the bottom analytical figure summarize comparisons graphically (top left) with the cumulative areal fraction distribution (CDF) of grain sizes versus phi. The
blue curve corresponds to manual segmentation while the pale green straight line fit represents the best fit Gaussian. The red curve corresponds to the automated outcome
with orange best fit. Binary image on the upper right shows the manual segmentation outcome, while the lower left shows the automated result. The broad white region
corresponds to the portion of the compounded spherules captured in the sample window (top context image). Lower right binary image identifies pixels of mismatch as 1
(white) and overlap as 0 (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mean grain size histograms (Fig. 9) as well as the secondary peak
approximating unity in the histogram of K–S values (Fig. 11). Such
convergence is strengthened by the conservative nature of the K–S
test with its strong sensitivity to divergence in the distributional
tails (Karunatillake et al., 2010a) where areal grain size distribu-
tions are most likely to diverge (Fig. 9 by Graham et al., 2005a).

The robustness of our algorithm and its software implementa-
tion in Mathematica-8 surmounts key limitations of photoanalyses
at least as successfully as a sedimentologist. In the context of two-
dimensional imagery for which we developed our algorithm, one
such constraint is imbrication, typically yielding smaller apparent
size than the actual by the overlap of grains (e.g., Fig. 6 by Graham
et al., 2010). It may also cause separate grains to appear fused (e.g.,
Wang, 2008). Sophisticated solutions exist in terrestrial software
that employ stereoscopic information to distinguish individual
grains better (e.g., Maerz et al., 1996). Such algorithms can be en-
hanced further to address foreshortening from the projection onto
a plane. However, that comes at the cost of substantially higher
complexity and computing burden (e.g., Maerz et al., 1996). A third
key limitation results from the iceberg effect (Fig. 6 by Graham
et al., 2010) where large grains partially concealed by neighbors
may appear smaller than actual.

Some disparities between photoanalysis and manual sieving re-
solve easily. For example, systematic differences with square-holed
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Fig. 9. Histograms of areally-weighted mean diameters of grains in U units for all
50 samples; smoothed with a Gaussian Kernel for visual clarity. The histogram for
manual segmentation is blue, while the computed histogram is red. The two gray
vertical lines highlight peak overlap, indicating convergence both at fine grain sizes
and coarse grain sizes. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. KDE histogram of relative difference in mean diameter (x-axis) between
automated and manual segmentation as discussed in Section 3. We compute the
difference relative to the mean diameter of grains as segmented automatically,
preventing bias from diverse grain distributions across different MI images. KDE
applied with a Gaussian Kernel yields the actual distribution (red curve) based on
50 sample excerpts from 10 MI images. The size of each excerpt, at no smaller than
50 � 50 pixels, accounts for the feasibility limits of segmenting manually. The
orange curve identifies the best-fit Gaussian to the distribution. For universal shape
and peak reference, we also plot the KDE histogram of a standard normal
distribution in blue. Identical results from automated and manual segmentation
would yield a Gaussian with zero mean. In Section 3 and related text, we discuss
what the deviations from this ideal may imply. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 11. Distribution of K–S probabilities for manually-derived areal distribution of
grains compared to the computed for all 50 samples. Smoothing with a Gaussian
Kernel for visual clarity causes the K–S distribution to appear to extend beyond 0
and unity even though it is bounded between. Estimated Gaussian (orange) and
standard normal (blue) distributions provide context for the shape of the actual
distribution (red) of K–S values. Peaks occur at approximately unity and zero joined
by a broad shoulder. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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physical sieves can be addressed with scaling factors (para. 17 by
Graham et al., 2005b). Equally addressable is the bias for larger
grains introduced by counting all grains along the image perimeter,
mitigated by counting all grains along the top and left edges while
excluding all grains on the bottom and right edges (Fig. 2 and para.
15 by Graham et al., 2005b).

A major issue with segmentation, manual or otherwise, is the
difference between areal distributions and mass distributions.
While the areal distributions enabled by our algorithm compare
far better with the sieved mass distributions than point counts of
previous planetary work (Cabrol et al., 2008; Calvin et al., 2008;
Yingst et al., 2008), the scaling function between area and mass
distributions is non-linear; differences cannot be corrected with
a constant scale factor. Even stereoscopic algorithms (Maerz
et al., 1996) would not resolve this, since the imager can only sam-
ple the uppermost layer of sediment, not a sample in bulk. It will
remain a caveat whenever comparisons are made with planetary
granulometry and sieve-based terrestrial counterparts. On the
other hand, grid-by-number terrestrial distributions can be con-
verted to the areal distribution or vice versa (para. 18 by Graham
et al., 2005b).
3.4. Terrestrial analogs

The major caveat of our work, the physical inaccessibility of
martian sediment, will be addressed by using terrestrial analogs
in an upcoming project. Entailing sieving for uniformity of samples,
this would effectively calibrate our algorithm independent of hu-
man vision. While beyond the scope of this study, our preliminary
observations of terrestrial sediment indicate that translucent
(quartz-rich) grains would challenge the algorithm by making
grain edges brighter than interiors. Translucence undermines the
segmentation process, since our algorithm utilizes higher reflected
radiant emittance from grain interiors. We did not encounter such
issues with martian sediment images and do not encounter them
with Costa Rican beach sediment, since their basaltic composition
minimizes translucence.

The Costa Rican beach sand (Playa Hermosa, Jaco; � 0.1–
1.0 mm grain size fine-to-coarse sand with a small fraction of finer
material) had a large, locally derived basaltic component on which
we placed foreground pebbles (�5–10 mm grain size fine-to-med-
ium pebbles) (Fig. 13). Fig. 13A shows an extracted portion of the
original image, taken with a Nikon D60 digital SLR camera with
an 18–55 mm auto focus, variable focal length lens (the image
was taken at a focal length of 55 mm), and a CCD of 3872 � 2592
pixels. With an effective resolution of �17 lm/pixel (this value
varies slightly with focus), the image approximates the best reso-
lution of the MAHLI camera on the Curiosity Rover.

Fig. 13B shows the segmentation results overlain on the origi-
nal, with the algorithm operating in the distinct foreground mode.
Note that the three foreground pebbles are resolved satisfactorily,
with no background sand grains included in the foreground, except
for a few contiguous grains with similar albedo adjacent to the
pebbles. Visual inspection (e.g., Fig. 13C) indicates that in general,



Fig. 12. Cumulative distribution function (CDF, y-axis) of K–S probabilities (x-axis) for areal distributions of automated segmentation compared to the manual counterparts.
Each of the 50 sample MI excerpts yields one K–S probability. We partition the K–S probability cumulative distribution in three with two thresholds at 0.1 (yellow grid line
corresponding to 10% likelihood that automated and manual distributions could have differed by at least as much as the observed due to chance alone) and 0.8 (red grid line
corresponding to 80% likelihood of chance divergence). 50% of samples yield K–S values higher than 10%, while �15% of the samples exceed 80% indicating minimal
divergence. Detailed inferences from the cumulative distribution are presented in Section 3.1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 13. Image of terrestrial sample, �27.2 mm to a side, of Costa Rica sediment (Playa Hermosa, Jaco; �0.1–1.0 mm grain size fine-to-coarse sand with a small fraction of
finer material) on the left (A). Foreground pebbles (�5–10 mm grain size fine-to-medium pebbles) were placed on the sediment. (A) This figure shows the original prior to
segmentation, while (B) shows the segmented result overlain on the original. Excerpt shown in (C), with location in original identified with an arrow. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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grains were segmented successfully with few fused or fragmented
individuals. This initial result with a terrestrial sample enhances
our confidence that the algorithm can accurately segment images
even when the sediment sample is unavailable for hands-on anal-
ysis, provided the algorithm parameters are optimized and the
sample characteristics lend themselves to automated segmenta-
tion (e.g., relatively non-reflective, opaque grains). Our future
study with terrestrial samples will extend, detail, and quantify
these initial results, while retaining the robust statistical assess-
ment of the current work.

4. Conclusions and future work

Our algorithm, as described in our companion work
(Karunatillake et al., 2014), operates robustly relative to a human
operator at the grain size scales prevalent in MER MI images. Also
rapid, it processes a single MI image within 1–5 min. Such
strengths and consistency across different images, locations, and
perhaps missions and planets holds the promise of robust granul-
ometry and inferred sedimentology, of planetary sediment, as an
improvement over current ability. As with terrestrial photoanaly-
sis, the focal axis of the imager must be oriented normally to the
sediment surface for a constant pixel-to-physical size conversion
factor, or the device data must offer computable image distortion;
angular distortion must be minimal relative to grain size.

In future work, we will consider diverse examples analyzing
terrestrial sediment as references to compare with sieved results,
assess previous planetary granulometry with MER MIs (Cabrol
et al., 2008; Karunatillake et al., 2010a; McGlynn et al., 2011),
and determine grain size distributions in the context of Thermal
Infrared characterization (Fergason et al., 2006; Hardgrove et al.,
2009). We expect this to expand the scope of our work further,
by integrating thermal characterizations of remotely sensed sur-
faces with remote imaging, including aerial, campaigns.
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