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In planetary exploration, delineating individual grains in images via segmentation is a key path to sedi-
mentological comparisons with the extensive terrestrial literature. Samples that contain a substantial
fine grain component, common at Meridiani and Gusev at Mars, would involve prohibitive effort if
attempted manually. Unavailability of physical samples also precludes standard terrestrial methods such
as sieving. Furthermore, planetary scientists have been thwarted by the dearth of segmentation algo-
rithms customized for planetary applications, including Mars, and often rely on sub-optimal solutions
adapted from medical software. We address this with an original algorithm optimized to segment whole
images from the Microscopic Imager of the Mars Exploration Rovers. While our code operates with min-
imal human guidance, its default parameters can be modified easily for different geologic settings and
imagers on Earth and other planets, such as the Curiosity Rover’s Mars Hand Lens Instrument. We assess
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the algorithm’s robustness in a companion work.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

As an important recent achievement in sedimentology, orbital
and surface observations have identified an extensive and highly
varied sedimentary record on Mars (Grotzinger et al., 2011). Until
samples are returned, however, the study of the physical sedimen-
tology on Mars, including grain size analyses, must rely on high-
resolution images. One example of such imaging involves the Mars
Exploration Rover’s (MER) Microscopic Imagers (MI) (Herkenhoff
et al., 2003), carried onboard the Spirit and Opportunity rovers,
that returned thousands of digital grayscale pictures with a resolu-
tion of 31 um/pixel. The enormous time and resource commitment
required for manual estimation of granulometry for such a large
data set necessitates automated photoanalyses.

Here we present a new algorithm that delineates individual
grains in sediment images by segmenting an image into binary val-
ues of objects and background; to our knowledge the first auto-
mated segmentation with minimal human guidance in planetary
science (cf., Detert and Weitbrecht, 2012). We develop robust seg-
mentation as the first step to comparisons of planetary data with
established and extensive cumulative representations of terrestrial
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sediment volume, mass, and shape (Boggs, 2009; Folk, 1968, 1980;
Lewis and McConchie, 1994). We evaluate our algorithm and
resulting code in our companion work (Karunatillake et al., 2013.
A martian case study of segmenting images automatically for gran-
ulometry and sedimentology, Part 2: assessment, in press at
Icarus).

Planetary images of sediment, martian Mls specifically, con-
tinue to need robust segmentation, mainly due to a lack of integra-
tion between mature algorithms used on Earth (e.g., Detert and
Weitbrecht, 2012) and emerging planetary sedimentology. We
bridge this gap by optimizing the methods used in several terres-
trial fields for planetary science: bed surface sedimentology (Detert
and Weitbrecht, 2012; Dugdale et al., 2010), hydrology (Strom
et al., 2010), sediment core analyses (Lewis et al., 2010), and rock
pile analyses in the mining industry (Franklin and Katsabanis,
1996). Instead of adopting commercial software used in such fields,
such as Wipfrag, Simagis, and Fragscan (Maerz et al., 1996;
Schleifer and Tessier, 2002), we developed a new algorithm to
better suit planetary images for the reasons that follow.

First, segmentation typically - though not always, for example
live tracking of sediment transport (Rubin et al., 2010) - plays a
secondary role in studies of terrestrial sediment due to the ease
of field access using sieves or methods such as grid-by-number
(Graham et al., 2005b). Sieves in particular remain the gold
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standard on Earth, even in the mining industry where image seg-
mentation is necessary to assess size distributions of blasted rock
piles (Maerz et al., 1996). In contrast, image analysis remains the
only tool available to planetary sedimentologists.

Second, our own work (Karunatillake et al., 2010) demonstrated
many deficiencies to manual segmentation. For example, sub-
sections of images, even when selected as representative of the
whole, frequently differed in the distribution of grain sizes. Manual
delineation of individual grains became impractically slow with
the preponderance of grains finer than few tens of pixels across.
This became an acute issue for fine grains proximal to others larger
by more than an order of magnitude. Furthermore, internal consis-
tency of manual segmentation seemed suspect, challenged by both
positioning and grain perimeter precision.

Third, we did not find compelling automated alternatives in the
planetary science literature. Most of our peers rely on Image], devel-
oped specifically for medical image analyses (e.g., Lewis et al.,2010),
to semi-automate segmentation of images from MER and Phoenix
missions (Cabrol et al., 2008; Calvin et al., 2008; Goetz et al.,
2010; Yingst et al., 2008). More important, the slowest task of delin-
eating grain edges was done manually, while software assumed the
secondary role of computing grain dimensions and size-frequency
analyses (Goetz et al., 2010; Yingst et al., 2008). Even when con-
ducted on a robust grid-by-number basis that allows direct compar-
ison with terrestrial granulometry (McGlynn et al., 2011, 2012), this
approach remains slow due to segmenting manually.

Fourth, automated alternatives used on Earth are often statisti-
cal (Barnard et al.,, 2007; Buscombe et al., 2010; Rubin, 2004),
returning summary parameters via Fourier decomposition for
example, unlike geometric methods that would identify individual
grains with detailed areal analyses of grain size distributions.
Geometric methods targeted at river bed sediments in the context
of hydrological modeling (e.g., Detert and Weitbrecht, 2012) often
operate on grain populations with less size contrast between
coarse and fine grain components than typical of martian images.

Finally, we sought to identify the limits of segmentation; both
the finest grains that can be identified while retaining accuracy
on the order of ~10%, and the largest grains whose distribution
can be sampled sufficiently given the Field of View (FOV) of the im-
ager. In addition, we identify issues that plague segmentation and
their implications to our algorithm.

2. Method

Given the objective of developing an algorithm to automatically
segment images from Mars, specifically from the MER MiIs, we describe
the algorithm with sufficient detail to code in any software platform,
including a summary flowchart. Our companion work (Karunatillake
et al.,, 2013, submitted for publication) describes its assessment.

The spatial resolution of photoanalysis - automated or manual
- depends solely on the imaging device; for example, 2 pixels
would correspond nominally to 62 pm for MI images. Throughout
the text, we list such examples with linear size and Wentworth
classification in parenthesis for MI images, such as 2 pixels (MI:
62 pm, coarse silt), to provide context. However, the effective res-
olution may often differ, depending on the desired accuracy of size
for smaller grains and of distribution for larger grains. We express
such constraints in image pixels to facilitate resolution estimates
for any imager, as the product of pixel size and the linear dimen-
sion of the image in pixels. In Section 3.1 we also present examples
in @, SI units, and corresponding Wentworth classes for current
planetary instruments.

The algorithm (Fig. 1) has several key manual guide points that
exploit the extraordinary pattern recognition abilities of the
human brain (e.g., Bharath and Petrou, 2008). The first is the

qualitative visual aspect of grains positioned atop, closer to the im-
ager, or generally distinct and fewer in number than most grains in
the image. We abbreviate the subset of such grains as the image
“foreground.” Fig. 1 contrasts an MI image where the foreground
is distinct from the background, with one where it is not. In MI
images, those with distinct foregrounds typically have larger grains
atop finer grains, yielding clear qualitative differences in illumina-
tion, shadows, and texture. Images of well-sorted grains, El Dorado
sand for example (Sullivan et al., 2008), typically have indistin-
guishable foregrounds. The choice, reversible should the outcome
dissatisfy the human operator, is binary: the foreground is either
distinct or it is not.

2.1. Image prepared

The algorithm bifurcates according to the choice of foreground
type (Fig. 1 Steps 2 and 3, denoted subsequently as 1S2 and 1S3
for brevity). For the case of a distinct foreground, the next step is
gamma correction, available in all image processing software (e.g.,
pp. 260, 630 by Poynton, 2002), to brighten darker regions. The
resulting image is processed in two different ways: One blurs unu-
sual features - such as sharp geometric shapes - with erosion (e.g.,
Gonzalez and Woods, 2007) using a disk matrix of 3-pixel radius
(Fig. 1S2.1.1). The size of the disk matrix was determined empiri-
cally using several MI images, and remains adjustable to suit differ-
ent data sources, such as the Phoenix mission’s Robotic Arm Camera
(RAC) (Keller et al., 2008) or the microscope of MECA (Microscopy,
Electrochemistry, and Conductivity Analyzer) (Hecht et al., 2008).

The other path computes the information entropy (e.g., Havil
and Dyson, 2003) for each pixel using the 8 nearest neighboring
pixels (Fig. 1S2.1.2). This exploits the textured nature of the back-
ground relative to the foreground, with accordingly higher entropy
values. The result is scaled to the grayscale [0, 1] range, clipped to
between [0, 0.5], then dilated (e.g., Dougherty and Lotufo, 2003) to
minimize holes and irregularities in the isolated foreground ob-
jects. The two images that result, one from erosion and the other
from entropy filtering, are added linearly after the entropy filtered
image is multiplied by 0.2. The 0.2 weight was determined manu-
ally using several MI images, and can be adjusted for data from
other instruments. The resulting image is scaled yet again to be-
tween O and 1, yielding Fig. 1c. Polychromatic images are pro-
cessed in grayscale since the color information does not usually
yield better segmentation despite increasing the complexity of
analysis (e.g., para. 11 by Graham et al., 2005c¢). The entropy filter
steps makes our algorithm distinct from others such as the seg-
mentation method by Detert and Weitbrecht (2012).

2.2. Foreground segmented

The next step (Fig. 1S2.3) is key to segmenting foreground ob-
jects successfully. We employ Mathematica’s inbuilt module that
uses Otsu’s algorithm (1979) maximizing cluster variance to com-
pute a global threshold, t, in pixel intensity (i.e., grayscale). Seg-
mentation is then achieved morphologically, modulated with two
scale factors that the operator submits (Fig. 1S2.4), c and f, where
f = c. The algorithm uses f x t as the threshold grayscale value
above which a pixel is assigned to the foreground with a value of
1. The lower threshold ¢ x t allows pixels connected to foreground
objects to be included in the foreground despite failing to satisfy
the global ft threshold. This ensures local contiguity of grains, min-
imizing fragmentation (Eden and Franklin, 1996), for example,
while minimizing the variance of pixel intensity within each area
defined as a single grain. An operator can modify f and c iteratively
until the segmented image appears satisfactory; the process is
aided by a visually striking change of the output at the transition
from sub-optimal values to the optimal value.
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Fig. 1. Algorithm to segment images of martian soil into individual grains at coarse and fine spatial scales. The processing steps are numbered in sequential order. Appearance
of MI image on sol 10 at Tarmac Merlot in Meridiani after key processing steps is illustrated, with (a) as the original image. Initial adjustments and entropy filter highlighting
the foreground generate the intermediate image (c), with processing completed through step 2.2. Subsequent steps through 2.9 completes the segmentation of the
foreground into individual grains as shown in (d). (e) This figure shows the extracted background after processing through step 3.4. The image multiplication between the
segmentation result of (e), via Watershed and Otsu’s algorithms, and (d) from the foreground segmentation, generates the output of the algorithm, labeled (f). Both
foreground and background are segmented into individual grains in (f). The El Dorado sample from Gusev crater, labeled (b) on the upper right (sol 709), exemplifies an image
where the foreground would be considered indistinct. Images approximate 3 x 3 cm in size.

Otsu’s algorithm creates a binary image, where all pixels of each
foreground object are assigned unity and the rest zero. Negligible
objects that were segmented are deleted (with a Mathematica in-
built module, DeleteSmallComponents), after which objects are di-
lated (e.g., Dougherty and Lotufo, 2003) so that each segmented
grain occupies the maximum possible area with holes minimized.
This completes the foreground segmentation (Fig. 152.9), with an
outcome such as Fig. 1d.

2.3. Background segmented

To segment the background, the foreground (Fig. 1d) needs to be
excluded first with a mask, created by inverting the foreground-
segmented image so that the background pixels are each unity
(Fig. 1S2.10). When multiplied with the image from Fig. 1S2.2, the
outcome effectively eliminates all foreground pixels, while preserv-

ing the original grayscale values of the background pixels. This forms
the initial image (Fig. 1S2.12) for the second branch (Fig. 1S3) of the
algorithm, segmenting background pixels into individual grains. An
initial gamma correction ensures an optimal illumination stretch of
pixel grayscale values. The image is then sharpened to enhance edges
since unlike foreground grains, imbrication and juxtaposition
(Section 3) pervasively obscure grain boundaries. To prevent
segmentation into arbitrarily small objects of unusual geometric
shapes - particularly those with zero radii of curvature - this image
is then opened (e.g., Dougherty and Lotufo, 2003) (Fig. 1S3.4) with a
disk matrix (cf. with Fig. 1S2.1.1). The optimal radius of the disk
matrix is determined empirically by the operator.

Pixel values of the image resulting from the previous step
(Fig. 1e) are inverted to be segmented with the Watershed
algorithm (Fig. 1S3.6) developed by Meyer (1994 ). While Mathem-
atica’s Watershed algorithm is inbuilt, it is readily available in most
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software environments as a standard module. A key difference
from morphological components algorithms such as by Otsu
(1979) (Fig. 1S2.3) is that Watershed assesses the image much like
a terrestrial elevation map of aqueous watersheds by first identify-
ing minima, then expanding across neighboring pixels of least va-
lue up to an optimal level. This maximizes the area of grains while
restricting the background to grain boundaries; as a consequent
drawback, the majority of pixels are segmented, with a high likeli-
hood of fragmentation and improper classification of pore space as
parts of grains.

Unlike the use of Watershed segmentation as a final step by
other workers (e.g., Detert and Weitbrecht, 2012), we avoid Water-
shed’s tendency to hyper-segment by employing Watershed’s bin-
ary image output (Fig. 1S3.6) solely to highlight potential grain
boundaries. We achieve this by multiplying the Watershed Image
(Fig. 1S3.6) with its initial opened counterpart (Fig. 153.4); pixels
assigned zero by Watershed become zero in the final image, while
others retain their values. At this point, the image can be seg-
mented morphologically without additional morphological trans-
formations such as Bottom-Hat, or edge detections such as Sobel
(c.f, Detert and Weitbrecht, 2012); without Watershed, an algo-
rithm such as Otsu’s would have fused too many distinct grains.
To minimize fused grains further, unlike Fig. 1S2.5, the secondary
threshold for connected neighbors is absent. However, the primary
multiple of the segmentation threshold ¢t remains adjustable by the
operator as f2. The binary image that results from the segmenta-
tion reveals background grains optimally.

As shown in Fig. 154, whenever the foreground appears distinct
to the operator, the final segmented image is the addition of that
from Fig. 1S2.9 with that from Fig. 153.10, yielding the final seg-
mented image (Fig. 1e). In all others instances, only the second
branch of the algorithm is executed as just described. As described
in the preceding paragraphs, Fig. 1a-e shows the appearance of an
example MI image at several key steps.

Standard software options allow grain dimensions to be mea-
sured individually in a binarized image, which can then feed an
automated granulometry code. We may achieve this with the mod-
ule “ComponentMeasurements” in the Mathematica-8 environ-
ment, which automatically computes the weighted area of each
grain. It also computes the major and minor semi-axes of the best
fit ellipse, determined in a manner that yields the most accurate
measure in empirical observations: second moment of area
(Graham et al., 2005a).

3. Results and discussion

While we do not endorse Mathematica over alternatives, Math-
ematica-8 offered us the advantage of an inbuilt inventory of all
the key modules of the algorithm, requiring mostly concatenation
to create the software. Additional strengths include the ability to
seamlessly assign numeric and non-numeric values to variables;
to achieve precision independent of the hardware environment;
to annotate results with rich text; and to evaluate interactively
with the GUI module, “Manipulate”. These benefits are enhanced
further at the granulometry phase, given the availability of exhaus-
tive measures of grain form and shape with a component descrip-
tor module “ComponentMeasurements.” We include the function
modules as a supplementary Mathematica file with this manu-
script for future applications by other scientists.

Visually, the algorithm segmented the whole image impres-
sively, examples of which are shown in Fig. 2 for cases of both dis-
tinct and indistinct foreground. We describe the evaluation of the
algorithm in our companion work (Karunatillake et al., 2013,
submitted for publication). In this work, we describe the broader
grain size thresholds of photoanalysis that apply to our algorithm.

Photoanalysis in general and segmentation in particular is sub-
ject to two important thresholds: at the smallest grain sizes, with
the challenge to measure the diameter correctly; and at the largest
grain sizes, with the challenge to sample the distribution correctly.
Empirical assessments with terrestrial sediments (Graham et al.,
2005c, 2010) as well as with synthetic spheres (Kennedy and
Mazzullo, 1991) have characterized these values as a function
of the number of pixels in an image and of the size of a grain in pix-
els. Knowing the spatial resolution of the image in length/pixel,
such thresholds convert directly to length via (pixels) x (size of a
pixel). As before, for general applicability with all imaging devices,
we state thresholds as reported in pixels by other sedimentolo-
gists, followed by the MI equivalent within parenthesis as a
concrete example in the geologic context of soil at Gusev and
Meridiani.

3.1. Smallest grain size

Using coarse-grained sediments easily resolvable to a human,
Graham et al. (2005a) - in their Fig. 9 - have shown that the algo-
rithmic measure of grain diameter can be inaccurate by more than
5% at the smallest 5th percentile of the distribution when the min-
or full axis is less than about 23 pixels in size (MI: 713 pm, coarse
sand, where a 5% error would still preserve the Wentworth classi-
fication). However, the middle range of the distribution appears
generally unaffected. Nevertheless, the 23 pixel size (MI: 713 pum,
coarse sand) also appears optimal for manual segmentation due
to factors Graham et al. (2005a) enumerate as: (1) increase in pro-
portional significance of each pixel at smaller diameters (2) loca-
tion uncertainty of boundary pixels (3) boundary uncertainty of
adjacent pixels (cf,, para. 16 by Graham et al., 2010). We note that
this size threshold contrasts starkly with the optimistic value of
approximately 5 pixels (MI: 155 pum, fine sand) that has been used
in recent planetary literature (e.g., Karunatillake et al., 2010). Such
fine thresholds may be robust only for summary statistical param-
eters (Rubin, 2004; Rubin et al., 2007, 2010).

Using spheres of known size, Kennedy and Mazzullo (1991) also
demonstrated that the estimated diameter of a sphere can be in er-
ror by ~10% when the perimeter is less than 8 pixels (equivalent to
2.5 pixel diameter; MI: 78 pm, very fine sand. The correct classifi-
cation is retained up to a 17% error, at which point an incorrect
Wentworth classification of silt would result), which decreases to
~1% when the perimeter exceeds 22 pixels (equivalent to 7.0 pixel
diameter; MI: 217 pm, fine sand). For an imager with variable focal
length, such as RAC (Keller et al., 2008) or MAHLI (Edgett et al.,
2009, 2012), it is possible to consider the size threshold either as
the smallest size that can be measured accurately or as the largest
area that may be imaged with acceptable error in the smallest
desired grain size. Different thresholds apply for grain form
properties such as convexity and roundness (Roussillon et al.,
2009). These thresholds (Table 1) may also be converted (para. 9
by Graham et al., 2005c) to yield smallest grain diameter in pm
as a function of imaged area (A in mm?), number of pixels in image
(P), and smallest diameter in pixels (n): (1O3n\/";).

Some of the thresholds in Table 1 applied for MAHLI (~13.9 pm/
pixel, scale of fine silt at maximum magnification for 1600 x 1200
pixel image), MI (~30 um/pixel, scale of medium silt, fixed focus
for 1024 x 1024 pixel image), MECA {~4 pum/pixel, scale of very
fine silt, fixed focus for 256 x 512 pixel image (para. 15 by Hecht
et al., 2008)}, and RAC {~23 pum/pixel, scale of medium silt at max-
imum magnification for 256 x 512 pixel image (para. 17 by Keller
et al., 2008)} images are shown in Fig. 3. Comparatively, MAHLI's
potential limit of ~325 um (medium sand) indicates a major
improvement over MI's ~ 700 um (coarse sand) as evident in
Fig. 3(Top).



404 S. Karunatillake et al./Icarus 229 (2014) 400-407

Fig. 2. Examples of MI images segmented with the Mathematica-8 application of our algorithm. Original images are shown above the corresponding binary images. From left

to right: sol 709 at Gusev, sol 17 at Meridiani, and sol 38 at Meridiani.

Table 1

Smallest segmented grain for which a particular aspect is accurate at a specified level, with diametric size specified in pixels. These thresholds generate the curves shown in Fig. 3

for variable-focus imagers.

Aspect Error limiting description

Smallest diameter in pixels {MI equivalent size}

Reference

Grain diameter <5% relative to physical measurement of the smallest 5th
percentile of grains

Grain diameter

23 {713 um, coarse sand}

Graham et al. (20054, Fig. 9)

<4% for ellipse-fit method relative to direct iterative
method
<10% relative to known value of sphere

12 {372 pm, medium sand} Graham et al. (20054, Fig. 13)

Grain perimeter 2.5 equivalent {78 pm, very fine sand} (perimeter ~ Kennedy and Mazzullo (1991,

length >8 pixels) Table 6.1)
Roundness <5% relative to physical measurement 16 equivalent {496 um, medium sand} (perimeter  Roussillon et al. (2009, Fig. 7)
>50)
Convexity <5% relative to physical measurement 32 equivalent {992 pm, coarse sand} (perimeter Roussillon et al. (2009, Fig. 7)
>100)
Physical Point spread function for CCD ~0.8-1.5 {25-47 pm, medium to coarse silt}; McEwen et al. (2007, para. 17
resolvability varies with instrument and Fig. 9)
Planetary Experiential and qualitative limit to manual 5 {155 pm, fine sand} Karunatillake et al. (2010, para.
community use segmentation 12 and 13)

3.2. Sampling the size distribution

The upper bound in size threshold reflects the difficulty of sam-
pling a distribution unless a minimum number of grains are pres-
ent in the field of view. Consequently, it may be computed as a
bound on the largest grain size that may be sampled correctly.
Alternatively, where variable focus or image mosaics are available,
it can be the minimum FOV area required to sample a particular
upper bound on grain size. As Graham et al. (2010, Figs. 2 and 3,
and Table 1) determined empirically, the diameter corresponding
to the largest 10th percentile of the distribution can be estimated
within 10% accuracy if the FOV area is at least x100 that of the
largest grain. This also corresponds to an error not more than 5%
at the median size. An error not exceeding 10% at the median is
possible with the FOV x50 that of the largest grain size. For greater
accuracy on the order of 5% in the largest 10th percentile, the FOV
area would need to be x200 that of the largest grain. As with the
finest grain size, these thresholds can be presented graphically
(Fig. 4) to determine the necessary FOV or mosaic size for a given
set of image properties. Likewise, the thresholds apply readily for
an image of known properties - size of each pixel and the number

of pixels along each dimension of the image. Alternatively, for a de-
vice with variable focal length and object distance, such as MAHLI
(Edgett et al., 2012), the FOV area may be computed directly using
the lens formula (p. 732 by Knight, 2007) as dd. G- 1)? where d,
and d, are the linear dimensions of the CCD, s is the object distance,
and f the focal length. In either case, the calculation remains inde-
pendent of the compression ratio of the image and bits per pixel,
since they contribute to the precision with which the image may
be segmented rather than the accuracy.

4. Conclusions and future work

Our algorithm segments images of unconsolidated sediment
automatically while allowing manual control, first by assessing
whether the image has a distinct foreground and subsequently
by fine-tuning the parameters of segmentation. As discussed in
our companion work (Karunatillake et al., 2013, submitted for pub-
lication), it enables a degree of internal consistency and rapidity
likely unachievable manually by a sedimentologist. The software
implementation of our algorithm can be accompanied by auto-
mated granulometry, further reducing the task complexity for
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shows additional thresholds from Table 1, where the label 5p256 x 512 for example refers to the 5 pixel threshold with image size 256 x 512 pixels and variable focus. As
discussed in Section 3.1, 256 x 512 pixel image sizes correspond to RAC and MECA instruments. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

planetary sedimentology. A notable strength of the automated
granulometric implementation is the computation of areal distri-
butions as an approximation to bulk distributions in terrestrial
analog literature. We intend to expand the granulometric compo-
nent of the software further to include grain form characterization
such as convexity, roundness, and elongation (Roussillon et al.,
2009) in upcoming work.

Our algorithm compares favorably with the independent
sophisticated segmentation algorithm implemented in the MAT-
LAB platform by Detert and Weitbrecht (2012) for fluvial bed grain
analyses. Their work exemplifies the utility of a Graphical User
Interface (GUI) with robustness for terrestrial gravel photos, and
upward scalability similar to ours. Both techniques reinforce the

use of Otsu’s, Watershed, erosion, and dilation algorithms. Detert
and Weitbrecht (2012) software advances our code in several
ways. First, their GUI offers intuitive operation without a need to
type commands. Second, the GUI interface applies segmentation
selectively to different parts of the image. Third, their judicious
use of Canny and Sobel edge detection with Bottom Hat transforms
may strengthen operation.

Our algorithm advances the approach by Detert and Weitbrecht
(2012) in several ways: (1) we employ gamma correction to mini-
mize shadowing data loss; (2) we distinguish large grains from fine
grains on a textural basis with an entropy filter. This allows operat-
ing on fine grains separately, which are much harder to segment
than large grains; (3) the dual-method of our code may successfully
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Fig. 4. Relationship between diameter of largest grain in image and imaged area (mm?) to achieve desired accuracy. Curve in blue is for 10% accuracy in the diameter
corresponding to the largest 10th percentile. This also corresponds to an error not more than 5% at the median size. Red curve reflects an error not exceeding 10% at the
median. Intersections of the curves and horizontal lines reveal size thresholds for the RAC at maximum magnification (11 mm distance to object), 10 cm distance to object,
and 20 cm distance to object. Intersection with lines labeled MECA and MI show thresholds for the corresponding fixed-focus instruments. The upper abscissa lists grain size
in @ units and classes (M, C, and VC indicate medium, coarse, and very coarse sand, respectively), and the right ordinate the FOV in mm?. Calculation discussed in Section 3.2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

segment at higher orders of size difference across grains in a sam-
ple. Lastly, we present our algorithm in a manner encouraging inde-
pendent coding and assessment. Summarily, while the two
techniques rely fundamentally on reflectance properties, they cater
to different sedimentological communities. However, using the two
methods concurrently may allow insight comparable to that gained
from manual segmentation by two independent teams.

As we discuss in our companion manuscript (Karunatillake
et al., 2013, submitted for publication), we will address the major
caveat of our work, the physical inaccessibility of martian sedi-
ment, by using terrestrial analogs in an upcoming project. Entailing
sieving for uniformity of samples, this would effectively calibrate
our algorithm independent of human vision. We will also consider
diverse examples analyzing terrestrial sediment as references to
compare with sieved results, assess previous planetary granulom-
etry with MER MIs (Karunatillake et al., 2010; McGlynn et al,
2011), and determine grain size distributions in the context
of Thermal Infrared characterization (Fergason et al., 2006;
Hardgrove et al., 2009). Possible application to petrological thin
sections could also be considered, as could applications in other
terrestrial settings where sediment would be digitally imaged
(e.g., Roussillon et al., 2009). Using robotically generated images
to assess undisturbed shallow sediment of deep sea and lake beds
would be an additional use that would complement current
physical sampling methods (e.g., Goff et al., 2004; Leduc et al.,
2012; Litt et al., 2009; Valloni and Maynard, 1981).

The automated segmentation described in this manuscript may
provide input for software currently used by planetary scientists,
such as adaptations of Image]. While the segmentation algorithm
can be implemented in any software environment such as IDL
and R, our particular implementation in Mathematica-8 offers
access to a rich suite of features, including the “ComponentMeasure-
ments” module enabling seamless automation of granulometry.
Stability and speed also result from the inbuilt availability of all
necessary function modules. Finally, the software implementation
is supported by Wolfram Inc., ensuring long-term viability of the
code with an established technology partner.
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